Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(S)-2-(2-Pyrrolidinio)-1*H*-benzimidazol-3-ium dichloride monohydrate

Dai Jing

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: fudavid88@yahoo.com.cn

Received 3 April 2009; accepted 20 May 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.050; *wR* factor = 0.120; data-to-parameter ratio = 19.2.

In the title compound, $C_{11}H_{15}N_3^{2+}\cdot 2Cl^-\cdot H_2O$, one N atom of the imidazole ring and the N atom of the pyrrolidine ring are protonated. The crystal structure is stabilized by aromatic π - π interactions between the benzene rings of neighbouring benzimidazole systems [centroid–centroid duistance = 3.712 (2) Å]. The crystal structure is further stabilized by intermolecular N-H···Cl, O-H···Cl and N-H···O hydrogen bonds.

Related literature

For proline derivatives, see: Fu *et al.* (2007); Aminabhavi *et al.* (1986). For related structures, see: Dai & Fu (2008*a*,*b*); Fu & Ye (2007).

Experimental

Crystal data

 $\begin{array}{l} C_{11}H_{15}N_{3}^{2+}\cdot 2\mathrm{Cl}^{-}\cdot H_{2}\mathrm{O}\\ M_{r}=278.18\\ \mathrm{Triclinic},\ P\overline{1}\\ a=7.493\ (2)\ \mathring{A}\\ b=9.739\ (2)\ \mathring{A}\\ c=9.937\ (2)\ \mathring{A}\\ \alpha=99.23\ (3)^{\circ}\\ \beta=95.73\ (3)^{\circ} \end{array}$

 $\gamma = 106.27 (3)^{\circ}$ $V = 679.0 (3) \text{ Å}^{3}$ Z = 2Mo K α radiation $\mu = 0.47 \text{ mm}^{-1}$ T = 293 K $0.35 \times 0.30 \times 0.15 \text{ mm}$

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.959$, $T_{max} = 0.982$ (expected range = 0.911–0.932)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ H atoms tr $wR(F^2) = 0.120$ independenceS = 1.08refineme3108 reflections $\Delta \rho_{max} = 0.162$ 162 parameters $\Delta \rho_{min} = -402$ 2 restraints $\Delta \rho_{min} = -402$

7119 measured reflections 3108 independent reflections 2310 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.28~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.24~e~{\rm \AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots Cl2^i$	0.86	2.17	3.018 (2)	169
$N2-H2A\cdots Cl1^{i}$	0.86	2.18	3.021 (2)	166
$N3 - H3A \cdots Cl2^{ii}$	0.90	2.20	3.058 (2)	158
$N3 - H3B \cdot \cdot \cdot O1W$	0.90	1.80	2.656 (3)	159
$O1W - H1A \cdot \cdot \cdot Cl1^{iii}$	0.85 (3)	2.22 (3)	3.069 (3)	174 (4)
$O1W - H1B \cdot \cdot \cdot Cl2^{iv}$	0.84 (3)	2.37 (4)	3.181 (2)	161 (4)

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z - 1; (iii) x, y + 1, z; (iv) x, y, z - 1.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2100).

References

Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125-128.

Brandenburg, K. (1998). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Dai, W. & Fu, D.-W. (2008a). Acta Cryst. E64, m1016.

Dai, W. & Fu, D.-W. (2008b). Acta Cryst. E64, m1017.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q. & Xiong, R.-G. (2007). J. Am. Chem. Soc. 129, 5346–5347.

Fu, D.-W. & Ye, H.-Y. (2007). Acta Cryst. E63, m2453.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, o1392 [doi:10.1107/81600536809019084]

(S)-2-(2-Pyrrolidinio)-1H-benzimidazol-3-ium dichloride monohydrate

D. Jing

Comment

Amino acid derivatives provide wide applications in the field of material science, such as ferroelectric, fluorescence and dielectric behaviors. Also, there have been much attention in the preparation of amino acid coordination compound. (Aminabhavi *et al.*, 1986; Dai & Fu 2008*a*,*b*; Fu & Ye 2007; Fu, *et al.* 2007). Here we report the crystal structure of the title compound, (S)-2-(pyrrolidinium-2-yl)-1H-benzimidazol-3-ium dichloride monohydrate (Fig. 1).

The crystal packing (Fig. 2) is stabilized by aromatic π - π interactions between the benzene rings of the neighbouring benzimidazole systems. The Cg...Cgⁱ distance is 3.712 (2) Å (Cg is the centroide of the C1—C6 benzene ring, symmetry code as in Fig. 2). The molecular packing is further stabilized by intermolecular N—H…Cl, O—H…Cl and N—H…O hydrogen bonds (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Experimental

The homochiral ligand (S)-2-(pyrrolidin-2-yl)-1H-benzimidazole was synthesized by reaction of *S*-pyrrolidine-2-carboxylic acid and benzene-1,2-diamine according to the procedure described in the literature(Aminabhavi, *et al.*(1986)). Then (S)-2-(pyrrolidin-2-yl)-1H-benzimidazole (3 mmol) was dissolved in the solution of distilled water (20 ml) and hydrochloric acid (1 ml) and evaporated in the air affording colorless block crystals of this compound suitable for X-ray analysis.

Refinement

All H atoms attached to C, N and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) or 0.98 Å (methine) and N—H = 0.90 Å (N3), 0.86 Å (N1, N2) and O—H = 0.85 Å with $U_{iso}(H) = 1.2U_{eq}(C,N)$ and $U_{iso}(H) = 1.5U_{eq}(O)$. The distances of O1W—H were restrained to 0.85 (1) Å using command DFIX.

Figures

Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Fig. 2. The π - π , N—H···Cl, O—H···Cl and N—H···O interactions (dotted line) in the title compound. Cg denotes the ring centroid of the C1-C6 benzene ring. [Symmetry codes: (i) - x+1, -y+1, -z+1; (ii) x-1, y, z-1; (iii) x, y+1, z; (iv) x, y, z-1; (v) -x, -y+1, -z; (vi) x+1, -y+2, - z+1; (vii) x, y-1, z; (viii) x, y, z+1; (ix) -x+1, -y+1, -z.]

(\$)-2-(2-Pyrrolidinio)-1H-benzimidazol-3-ium dichloride monohydrate

Crystal data

$C_{11}H_{15}N_3^{2+}\cdot 2Cl^-\cdot H_2O$	Z = 2
$M_r = 278.18$	F(000) = 292
Triclinic, <i>P</i> T	$D_{\rm x} = 1.361 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 7.493 (2) Å	Cell parameters from 3108 reflections
b = 9.739 (2) Å	$\theta = 3.1 - 27.5^{\circ}$
c = 9.937 (2) Å	$\mu = 0.47 \text{ mm}^{-1}$
$\alpha = 99.23 \ (3)^{\circ}$	T = 293 K
$\beta = 95.73 (3)^{\circ}$	Block, colorless
$\gamma = 106.27 \ (3)^{\circ}$	$0.35 \times 0.30 \times 0.15 \text{ mm}$
$V = 679.0 (3) \text{ Å}^3$	

Data collection

Rigaku Mercury2 diffractometer	3108 independent reflections
Radiation source: fine-focus sealed tube	2310 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.037$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
CCD profile fitting scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -12 \rightarrow 12$
$T_{\min} = 0.959, T_{\max} = 0.982$	$l = -12 \rightarrow 12$
7119 measured reflections	

Refinement

- J · · · · · ·	
Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.120$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.08	$w = 1/[\sigma^2(F_0^2) + (0.0354P)^2 + 0.3615P]$ where $P = (F_0^2 + 2F_c^2)/3$
3108 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$

162 parameters	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C11	0.81735 (10)	0.00616 (8)	0.30163 (7)	0.0600(2)
Cl2	0.79242 (9)	0.58762 (8)	0.97152 (7)	0.0597 (2)
N1	0.2136 (3)	0.5855 (2)	0.31035 (18)	0.0390 (4)
H1	0.2058	0.5445	0.2257	0.047*
N2	0.2230 (3)	0.7465 (2)	0.48963 (18)	0.0414 (5)
H2A	0.2224	0.8269	0.5400	0.050*
N3	0.1820 (3)	0.7775 (2)	0.11964 (19)	0.0425 (5)
H3A	0.0823	0.7024	0.0759	0.051*
H3B	0.2875	0.7518	0.1123	0.051*
C1	0.2450 (3)	0.6267 (3)	0.5381 (2)	0.0405 (5)
C2	0.2697 (4)	0.5979 (3)	0.6704 (3)	0.0573 (7)
H2	0.2738	0.6666	0.7483	0.069*
C3	0.2877 (4)	0.4640 (4)	0.6804 (3)	0.0662 (8)
H3	0.3058	0.4419	0.7674	0.079*
C4	0.2798 (4)	0.3597 (3)	0.5650 (3)	0.0628 (8)
H4	0.2919	0.2697	0.5766	0.075*
C5	0.2546 (4)	0.3866 (3)	0.4338 (3)	0.0537 (6)
Н5	0.2481	0.3169	0.3562	0.064*
C6	0.2394 (3)	0.5228 (2)	0.4234 (2)	0.0379 (5)
C7	0.2029 (3)	0.7186 (2)	0.3528 (2)	0.0364 (5)
C8	0.1637 (3)	0.8211 (3)	0.2668 (2)	0.0409 (5)
H8	0.0341	0.8225	0.2709	0.049*
C9	0.2916 (4)	0.9767 (3)	0.3080 (3)	0.0529 (6)
H9A	0.4185	0.9793	0.3426	0.063*
H9B	0.2454	1.0327	0.3786	0.063*
C10	0.2868 (6)	1.0359 (3)	0.1762 (3)	0.0755 (9)
H10A	0.2191	1.1077	0.1822	0.091*
H10B	0.4137	1.0822	0.1609	0.091*
C11	0.1905 (5)	0.9111 (3)	0.0618 (3)	0.0666 (8)
H11A	0.2606	0.9135	-0.0152	0.080*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H11B	0.0648	0.9134	0.0302	0.080*
O1W	0.5254 (3)	0.7671 (3)	0.0856 (3)	0.0863 (8)
H1A	0.613 (4)	0.832 (3)	0.142 (3)	0.117 (16)*
H1B	0.572 (5)	0.707 (3)	0.043 (3)	0.102 (13)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0704 (5)	0.0589 (4)	0.0530 (4)	0.0339 (4)	0.0092 (3)	-0.0076 (3)
C12	0.0536 (4)	0.0722 (5)	0.0447 (4)	0.0234 (3)	0.0033 (3)	-0.0186 (3)
N1	0.0487 (11)	0.0378 (10)	0.0303 (9)	0.0166 (9)	0.0067 (8)	-0.0010(7)
N2	0.0501 (11)	0.0408 (11)	0.0331 (10)	0.0182 (9)	0.0101 (8)	-0.0037 (8)
N3	0.0439 (11)	0.0448 (11)	0.0382 (10)	0.0161 (9)	0.0007 (8)	0.0050 (8)
C1	0.0378 (12)	0.0459 (13)	0.0378 (12)	0.0124 (10)	0.0106 (9)	0.0056 (10)
C2	0.0588 (16)	0.0740 (19)	0.0380 (13)	0.0176 (14)	0.0137 (12)	0.0085 (13)
C3	0.0662 (19)	0.086 (2)	0.0546 (17)	0.0220 (17)	0.0159 (14)	0.0355 (16)
C4	0.0642 (18)	0.0557 (17)	0.077 (2)	0.0197 (14)	0.0146 (15)	0.0316 (15)
C5	0.0593 (16)	0.0436 (14)	0.0600 (17)	0.0172 (12)	0.0119 (13)	0.0104 (12)
C6	0.0380 (12)	0.0374 (12)	0.0381 (12)	0.0111 (10)	0.0082 (9)	0.0052 (9)
C7	0.0357 (11)	0.0376 (12)	0.0350 (11)	0.0123 (9)	0.0076 (9)	0.0010 (9)
C8	0.0392 (12)	0.0445 (13)	0.0420 (13)	0.0197 (10)	0.0086 (10)	0.0031 (10)
C9	0.0599 (16)	0.0413 (14)	0.0550 (16)	0.0156 (12)	0.0086 (13)	0.0021 (11)
C10	0.110 (3)	0.0456 (16)	0.069 (2)	0.0160 (17)	0.0164 (18)	0.0150 (14)
C11	0.092 (2)	0.0606 (18)	0.0564 (18)	0.0338 (17)	0.0045 (16)	0.0239 (14)
O1W	0.0539 (13)	0.0682 (15)	0.125 (2)	0.0221 (12)	0.0145 (14)	-0.0227 (14)

Geometric parameters (Å, °)

1.324 (3)	C4—H4	0.9300
1.384 (3)	C5—C6	1.381 (3)
0.8600	С5—Н5	0.9300
1.327 (3)	С7—С8	1.484 (3)
1.376 (3)	C8—C9	1.514 (3)
0.8600	С8—Н8	0.9800
1.487 (3)	C9—C10	1.514 (4)
1.492 (3)	С9—Н9А	0.9700
0.9000	С9—Н9В	0.9700
0.9000	C10-C11	1.481 (4)
1.386 (3)	C10—H10A	0.9700
1.393 (3)	C10—H10B	0.9700
1.366 (4)	C11—H11A	0.9700
0.9300	C11—H11B	0.9700
1.389 (4)	O1W—H1A	0.85 (3)
0.9300	O1W—H1B	0.84 (3)
1.375 (4)		
109.38 (18)	N1—C6—C1	105.90 (19)
125.3	N1—C7—N2	108.91 (19)
125.3	N1—C7—C8	127.69 (19)
	1.324 (3) 1.384 (3) 0.8600 1.327 (3) 1.376 (3) 0.8600 1.487 (3) 1.492 (3) 0.9000 0.9000 1.386 (3) 1.393 (3) 1.366 (4) 0.9300 1.389 (4) 0.9300 1.375 (4) 109.38 (18) 125.3 125.3	1.324(3) $C4-H4$ $1.384(3)$ $C5-C6$ 0.8600 $C5-H5$ $1.327(3)$ $C7-C8$ $1.376(3)$ $C8-C9$ 0.8600 $C8-H8$ $1.487(3)$ $C9-C10$ $1.492(3)$ $C9-H9A$ 0.9000 $C10-C11$ $1.386(3)$ $C10-H10A$ $1.393(3)$ $C10-H10B$ $1.366(4)$ $C11-H11A$ 0.9300 $C1W-H1A$ 0.9300 $O1W-H1B$ $1.375(4)$ $N1-C6-C1$ 125.3 $N1-C7-C8$

C7—N2—C1	109.25 (18)		N2—C7—C8		123.30 (19)
C7—N2—H2A	125.4		C7—C8—N3		112.88 (18)
C1—N2—H2A	125.4		С7—С8—С9		115.7 (2)
C8—N3—C11	104.06 (19)		N3—C8—C9		103.78 (19)
C8—N3—H3A	110.9		С7—С8—Н8		108.1
C11—N3—H3A	110.9		N3—C8—H8		108.1
C8—N3—H3B	110.9		С9—С8—Н8		108.1
C11—N3—H3B	110.9		C8—C9—C10		104.4 (2)
H3A—N3—H3B	109.0		С8—С9—Н9А		110.9
N2—C1—C6	106.55 (19)		С10—С9—Н9А		110.9
N2—C1—C2	132.8 (2)		С8—С9—Н9В		110.9
C6—C1—C2	120.7 (2)		С10—С9—Н9В		110.9
C3—C2—C1	116.9 (3)		Н9А—С9—Н9В		108.9
С3—С2—Н2	121.6		С11—С10—С9		107.4 (2)
С1—С2—Н2	121.6		C11—C10—H10A		110.2
C2—C3—C4	122.2 (3)		С9—С10—Н10А		110.2
С2—С3—Н3	118.9		C11-C10-H10B		110.2
С4—С3—Н3	118.9		C9-C10-H10B		110.2
C5—C4—C3	121.5 (3)		H10A—C10—H10B		108.5
С5—С4—Н4	119.3		C10-C11-N3		105.7 (2)
С3—С4—Н4	119.3		C10-C11-H11A		110.6
C4—C5—C6	116.5 (3)		N3—C11—H11A		110.6
С4—С5—Н5	121.8		C10-C11-H11B		110.6
С6—С5—Н5	121.8		N3—C11—H11B		110.6
C5—C6—N1	131.8 (2)		H11A—C11—H11B		108.7
C5—C6—C1	122.3 (2)		H1A—O1W—H1B		109 (4)
C7—N2—C1—C6	0.6 (2)		C6—N1—C7—N2		0.8 (2)
C7—N2—C1—C2	-179.6 (3)		C6—N1—C7—C8		-175.7 (2)
N2-C1-C2-C3	-179.8 (3)		C1—N2—C7—N1		-0.9 (3)
C6—C1—C2—C3	0.0 (4)		C1—N2—C7—C8		175.8 (2)
C1—C2—C3—C4	-0.7 (4)		N1—C7—C8—N3		-14.5 (3)
C2—C3—C4—C5	0.4 (5)		N2—C7—C8—N3		169.4 (2)
C3—C4—C5—C6	0.6 (4)		N1—C7—C8—C9		-133.8 (2)
C4—C5—C6—N1	-180.0 (2)		N2—C7—C8—C9		50.1 (3)
C4—C5—C6—C1	-1.3 (4)		C11—N3—C8—C7		-164.9 (2)
C7—N1—C6—C5	178.4 (3)		C11—N3—C8—C9		-38.9 (2)
C7—N1—C6—C1	-0.4 (2)		С7—С8—С9—С10		154.4 (2)
N2-C1-C6-C5	-179.1 (2)		N3—C8—C9—C10		30.1 (3)
C2—C1—C6—C5	1.1 (4)		C8—C9—C10—C11		-10.2 (3)
N2-C1-C6-N1	-0.1 (2)		C9—C10—C11—N3		-13.5 (4)
C2-C1-C6-N1	-180.0 (2)		C8—N3—C11—C10		32.6 (3)
Hydrogen-bond geometry (Å, °)					
D—H···A	D	—Н	$H \cdots A$	$D \cdots A$	D—H…A
and and	•	0.6	0.17	2 0 1 0 (2)	1(0

supplementary materials

N3—H3B····O1W	0.90	1.80	2.656 (3)	159		
O1W—H1A…Cl1 ⁱⁱⁱ	0.85 (3)	2.22 (3)	3.069 (3)	174 (4)		
O1W—H1B····Cl2 ^{iv}	0.84 (3)	2.37 (4)	3.181 (2)	161 (4)		
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) $x-1$, y , $z-1$; (iii) x , $y+1$, z ; (iv) x , y , $z-1$.						

Fig. 1

